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Abstract. We have theoretically investigated electric-field and magnetic-field effects on electronic transport
properties in nanostructures consisting of realistic magnetic barriers created by lithographic patterning of
ferromagnetic or superconducting films. The results indicate that the characteristics of transmission res-
onance are determined not only by the magnetic configuration and the incident wave vector but also
strongly by the applied electric and magnetic fields. It is shown that transmission resonance shifts towards
the low-energy region by applying the electric field, and that with increasing the electric field trans-
mission resonance is suppressed for the entire incident wave vector in the magnetic nanostructures with
antisymmetric magnetic profile, while for the magnetic nanostructures with symmetric magnetic profile
transmission resonance is enhanced for certain incident wave vector. It is also shown that both transmission
and conductance shift towards high-energy direction and are greatly suppressed with the increase of the
external magnetic field.

PACS. 73.40.Gk Tunneling – 73.23.-b Electronic transport in mesoscopic system – 75.70.Cn Interfacial
magnetic properties (multilayers, superlattices)

1 Introduction

Electronic transport properties of magnetic-barrier nanos-
tructures have attracted considerable attention owing to
the advance in the microfabrication technique and po-
tential applications to electronic devices in the recent
years [1–16]. Present advances in nanofabrication allow
one to produce this type of nanostructures, by the de-
position of a heterostructure containing a high mobility
two-dimensional electron gas (2DEG) in an inhomoge-
neous magnetic field, such as, microscopic magnetic barri-
ers with amplitude of several thousand gauss have been
formed in nonplanar devices [3] or by gating a 2DEG
with micromagnets [4–6] or superconductors [7]. Exper-
imentally, magnetoresistance oscillations via the commen-
surability effect between the classical cyclotron diameter
and the period of a magnetic superlattice have been ob-
served [4,5,7]. Very recently, a sharp resistance resonance
effect has also been observed due to the formation of two
types of magnetic edge states [11]. Theoretically, studies
on electron tunneling through magnetic barriers [1,2,9]
and magnetic superlattices [8] showed that the magnetic
barriers possess wave-vector filtering, and magnetic mini-
bands in the energy spectrum are formed in magnetic su-
perlattice [8]. Quantum transport properties in magnetic
superlattices under the influence of dc electric fields [12]
and ac electric fields [13] have been explored. Very re-
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cently, effects of an applied electric field on electronic
tunneling in rectangular-magnetic-barrier structures have
been investigated [14]. However, the external magnetic-
field effect on the tunneling transport properties of elec-
trons in magnetic-barrier nanostructures remains uncon-
sidered and the magnetic barriers used in reference [14]
are not realistic ones. In this paper, we employ the re-
alistic magnetic barriers instead of the ideal ones, and
an electric field and a uniform magnetic field are further
applied to these magnetic barriers. The noticeable wave-
vector-dependent, electric-field-dependent, and magnetic-
field-dependent tunneling features are revealed.

2 Model and method

We consider four realistic magnetic barriers [1] labeled
by (a–d), which are formed, respectively, by the deposi-
tion, on top of a heterostructure, of a ferromagnetic stripe
with magnetization (a) perpendicular and (b) parallel to
the 2DEG, (c) of a conduction stripe with a current driven
through it, and (d) of a superconducting plate interrupted
by a stripe. For these four magnetic-barrier nanostruc-
tures, the magnetic fields (along the z direction) experi-
enced by the 2DEG in the (x, y) plane are given by

B = B(x, z0)ẑ,
B(x, z0) = B0[K(x+ d/2, z0) −K(x− d/2, z0)], (1)
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Fig. 1. Two realistic magnetic barriers (see (a) and (b)) and
corresponding magnetic vector potentials (see (c) and (d)),
where the schematic illustration of the system is placed on
the top and the structural parameters are both chosen to be
d = 1, and z0 = 0.1.

where (a) B0 = M0h/d, K(x, z0) = 2xd/(x2 + z2
0), (b)

B0 = M0h/d, K(x, z0) = −z0d/(x2 + z2
0), (c) B0 =

I/d, K(x, z0) = ln[(x2 + z2
0)/d2], and (d) B(x, z0) =

B0 Re[1/
√

1 − (x+ iz0)2]. M0, h, and d are the magneti-
zation, height, and thickness of the stripes, I is the current
driven through the stripe, and z0 is the distance between
the stripes and the 2DEG. According to these magnetic-
field expressions, these four magnetic barriers can be clas-
sified into two groups: the symmetric magnetic barriers,
B(−x, z0) = B(x, z0), containing (a) and (d); and the an-
tisymmetric magnetic barriers, B(−x, z0) = −B(x, z0),
having (b) and (c). Therefor, we only consider symmet-
ric magnetic barrier (a) and antisymmetric one (b) for
simplicity, however, our obtained results also can be ex-
tended the cases of magnetic barriers (c) and (d). Lan-
dau magnetic vector potentials A(x, z0) = [0, A(x, z0), 0]
of magnetic barriers (a) and (b) are given by A(x, z0) =
B0d ln{[(x+ d/2)2 + z2

0 ]/[(x− d/2)2 + z2
0 ]} and A(x, z0) =

B0d{arctan[(x− d/2)/z0]− arctan[(x+ d/2)/z0]}, respec-
tively. In Figure 1, we present these two magnetic bar-
riers as well as their magnetic vector potentials and the
schematic illustration of the system is also shown on its
top, where the structural parameters are both chosen to
be d = 1.0, z0 = 0.1, the left and right ends of the barriers
are assigned as x− = −1.5 and x+ = 1.5, respectively, and
the magnetic field is in units of B0.

The Hamiltonian for the 2DEG in the above magnetic-
barrier nanostructures under an applied electric field F x̂

(along the x direction) or an applied bias voltage Vα =
F (x+ − x−) and an external uniform magnetic field Bexẑ
(along the z direction) is described by

H =
1

2m∗ [P + eA(x)]2 − eFx, (2)

wherem∗ is the effective mass of electron, P is the momen-
tum of electron, and A(x) is the total Landau magnetic
vector potential consisting of A(x, z0) of the magnetic bar-
rier and Aex(x) = Bex[x − (x+ + x−)/2] of the exter-
nal magnetic field. We express quantities in dimension-
less units by using the cyclotron frequency ωc = eB0/m

∗

and the magnetic length lB =
√

�/eB0. For GaAs, m∗ =
0.067me (me is the free-electron mass) and an typical
magnetic field B0 = 0.2T [15], we obtain lB = 57.5 nm
and �ωc = 0.34 meV. Since the problem described by
equation (2) is translationally invariant along the y direc-
tion, the total wave function can be written as a product
Ψ(x, y) = eiqyψ(x), where q is the wave vector in the y di-
rection. Accordingly, we obtain the one-dimensional (1D)
Schrödinger equation
{
d2

dx2
− [A (x) + q]2 +

2eVαx

(x+ − x−)
+ 2E

}
ψ (x) = 0, (3)

where the function U(x, q, Vα, Bex) = [A(x) + q]2/2 −
eVαx/(x+ − x−) is often interpreted as the q−dependent
effective electric potential of the corresponding magnetic
nanostructure, which depends on the magnetic configura-
tion B (x, z0), the wave vector q, the applied bias volt-
age Vα or the external electric field F , and the external
magnetic field Bex. In the left and right regions, the wave
functions can be written as ψ(x) = eiklx+re−iklx, x < x−,
and ψ(x) = teikrx, x > x+, where kl =

√
2E − q2,

kr =
√

2(E + eVα) − q2, and r and t are the reflection
and transmission amplitudes, respectively. The effective
potential U(x, q, Vα, Bex) in equation (3) is very compli-
cated due to the magnetic profileB(x, z0) and its magnetic
vector potential A(x, z0), and thus no exact schemes are
available for solving the Schrödinger equation (3). Here,
we use the method in reference [16] to solve equation (3),
and the transmission coefficient through the magnetic-
barrier nanostructure with an applied electric or magnetic
field can be obtained by

T (E, q, Vα, Bex) = |t|2 . (4)

With the transmission coefficient, at zero temperature we
can calculate ballistic conductance at zero bias (i.e., Vα =
0)1,2

G (EF , Bex) =

G0

∫ π/2

−π/2

T
(
EF ,

√
2EF sin θ, 0, Bex

)
cos θdθ, (5)

where θ is the angle of incidence relative to the x direc-
tion, EF is the Fermi energy, and G0 = e2m∗vFLy/�

2,
where Ly is the length of the structure in the y directing
and vF the Fermi velocity.
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Fig. 2. Transmission coefficient for the magnetic barrier presented in Figure 1a under different applied biases Vα (in units of
�ωc/e), where the structural parameters are chosen to be d = 1, and z0 = 0.1.

Under an applied bias Vα, the transmission current I
of electrons through magnetic nanostructures can also be
derived from the transmission coefficient T by

I(Vα) = I0

∫ ∞

0

dE
√
E

[
f

(
E,Eleft

F

)
− f

(
E,Eright

F

)]

×
∫ π/2

−π/2

T
(
E,

√
2E sin θ, Vα, 0

)
cos θdθ, (6)

where I0 = Lye
√
m∗/2

√
2π2

�
2, and f

(
E,Eleft

F

)
and

f
(
E,Eright

F

)
are the Fermi-Dirac distribution functions

in the left and right electrodes, respectively. At zero tem-
perature, equation (6) reduces to

I(Vα) = I0

∫ EF

E0

dE
√
E

∫ 1

−1

T (E, t, Vα, 0)dt, (7)

whereE0 = (EF−eVα)Θ(EF−eVα) andΘ is the Heaviside
function.

3 Results and discussion

Figure 2 shows the transmission coefficient for electron
tunneling through a single-barrier magnetic nanostruc-
ture presented in Figure 1a with and without applied bi-
ases, where the structural parameters are chosen to be
d = 1, and z0 = 0.1. Here and in the following, the
bias voltage Vα is in units of �ωc/e. At zero bias, one
can clearly see from the solid curve in this figure that
there is an obvious low-energy resonance peak in trans-
mission spectrum due to the effective potential in equa-
tion (3) equivalent to a double-barrier electric potential
for |q| being small. Under a positive (see the left col-
umn a1–a3) or negative (see the right column b1–b3) ap-
plied bias, the characteristic of transmission resonance is
greatly altered. For this magnetic-barrier nanostructure,
its magnetic field profile and the corresponding magnetic
vector potential are symmetric and antisymmetric, re-
spectively, i.e., B(x, z0) = B(−x, z0) (see Fig. 1a) and
A(x, z0) = −A(−x, z0) (see Fig. 1c). Our calculated re-
sults show that cases under both positive bias and nega-
tive bias are the same for q = 0, and that for q > 0 the
case of positive bias is the same as that of negative bias for
q < 0; namely, electronic tunneling through this type of
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Fig. 3. Transmission coefficient for a nanostructure consisting
of two magnetic barriers, in which a barrier shown in Figure 1b
is followed by an identical one under different applied biases.
The structural parameters still are chosen to be d = 1, and
z0 = 0.1.

magnetic-barrier nanostructure is symmetric about both
the wave vector q and bias voltage Vα. When the applied
positive or negative bias increases, one can see that the
resonance peak shifts towards low-energy region for en-
tire wave vector. However, the variation of amplitude of
low-energy resonant peak with the applied biases depends
strongly on wave vector q. For q = 0, the transmission
resonance is suppressed under both increased positive and
negative biases. For q > 0, transmission resonance is en-
hanced with increasing positive biases, while squashed un-
der the increased negative biases. For q < 0, the changing
cases in transmission resonance are the opposite as those
for q > 0. Therefore, the external electric field strengthens
the anisotropy of the transmission coefficient with wave
vector q.

Figure 3 presents numerical results of transmission co-
efficient under positive and negative biases for electron
tunneling through a double-barrier magnetic nanostruc-
ture consisting of two identical magnetic barriers, in which
a magnetic barrier given in Figure 1b is followed by a iden-

tical one, and the parameters are chosen to be d = 1, and
z0 = 0.1. For this kind of magnetic barrier with antisym-
metric magnetic profile B(x, z0) = −B(−x, z0) and sym-
metric vector potential A(x, z0) = A(−x, z0) (see Figs. 1b
and 1d, respectively), we see from Figure 3 that the cases
are the same for positive bias and negative bias when
Bex = 0. Here it should be noted that the direction of
the electric field F and the applied bias Vα are opposite to
each other, i.e., for negative bias, the direction of electric
field is from left to right. In contrast to the case for elec-
tron tunneling through the magnetic nanostructure con-
taining one barrier with the symmetric magnetic profile
shown in Figure 1a, one can easily see that the transmis-
sion spectrum exhibits more, sharper, and more complex
resonance peaks in low-energy regions. Moreover, when
the positive bias or negative bias increases, the transmis-
sion resonance peaks shift towards lower energy regions
and are suppressed for entire wave vector q range. These
features are different from those for single-barrier nanos-
tructure due to their different magnetic configurations.

In Figure 4 we show the transmission current I for
electron with different Fermi energy tunneling through
single-barrier magnetic nanostructure presented in Fig-
ure 1a (see the left column (a1–a3)) and double-barrier
one given in Figure 1b (see the right column (b1–b3)),
where the structural configurations and parameters are
the same as in Figure 2 and in Figure 3 for the single-
barrier and double-barrier nanostructures, respectively. It
is well-known that for a 2DEG the Fermi energy can be
derived by EF = (�2π/m∗)ne, where � is the reduced
Plank constant, and m∗ and ne are the effective mass
and number density of electrons, respectively. Therefore,
for the GaAs material the Fermi energy of the 2DEG
is completely determined by the electron number den-
sity ne, and thus in the conventional GaAs/Ga0.7Al0.3As
heterostructure with [11] ne ∼ 1015 m−2 the EF =
3.55 meV ≈ 10(�ωc). However, here we take several Fermi
energy values to demonstrate the effect of ne on transmis-
sion current through the magnetic-barrier nanostructures
under the applied bias. Despite the averaging of trans-
mission coefficient (see Eq. (7)), the resonance features
similar to the transmission coefficient under applied bi-
ases are also reflected in I−Vα characteristic of tunneling
magnetic-barrier nanostructures, especially for the small
EF (see Figs. 4a1 and 4b1). Moreover, it can be seen from
Figures 4a1–4a3 that there exists a slight discrepancy
between the positive bias and the negative bias for single-
barrier magnetic nanostructure for the sake of transmis-
sion coefficient T , but they are the same (see Figs. 4b1–
4b3) for the double-barrier magnetic nanostructure due
to the symmetry of transmission coefficient about the
bias Vα as shown in Figure 3. One can also see that
the I − Vα characteristic exhibits an obvious negative-
differential-conductivity (NDC) effect for both magnetic-
barrier nanostructures, and this effect shows a strong
EF -dependence. When the Fermi energy or the number
density of the 2DEG decreases the degree of the NDC
effect becomes weak even disappears, which also implies
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Fig. 4. Transmission current through magnetic barriers for different Fermi energy EF . (a1–a3) A single-barrier nanostructure,
where the parameters are the same as in Figure 2. (b1–b3) A double-barrier nanostructure, where the structural configuration
and its parameters are the same as in Figure 3.

Fig. 5. Transmission coefficient for magnetic-barrier nanostructures under different magnetic field. The left column (a1–a3) is
for single barrier, while the right column (b1–b3) is for double barrier, and structural configurations and parameters are the
same as in Figure 4.
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Fig. 6. Conductance through magnetic-barrier nanostructures
under different magnetic fields. (a) and (b) correspond to the
single-barrier and double-barrier nanostructures, respectively,
where structural parameters and configurations are the same
as in Figure 4.

that adjusting the ne can improve the NDC properties of
magnetic-barrier nanostructures.

Figure 5 presents the transmission coefficient for an
electron tunneling through two magnetic-barrier nanos-
tructures under different applied magnetic fields. The left
column (a1–a3) corresponds to the single-barrier nanos-
tructure as shown in Figure 1a, where the structural pa-
rameters are the same as in Figure 2. The right column
(b1–b3) is for the double-barrier nanostructure with the
same structural parameters and configuration as in Fig-
ure 3. The external magnetic field Bex along the z direc-
tion is in units of B0 and is assumed not to influence the
original magnetic profile here. For the single-barrier mag-
netic nanostructure one can see from Figures 5a2 and 5a3
that the case for q > 0 is completely the same as that for
q < 0. As an external magnetic field is applied, the trans-
mission resonance is greatly altered for electron tunnel-
ing through these two magnetic nanostructures. Moreover,
with the external magnetic field increasing, the trans-
mission resonance through both magnetic nanostructures
shifts towards high-energy region (which is just the oppo-
site to that for electric field case) and is greatly suppressed
for entire wave vector range.

Finally, we study the conductance through magnetic-
barrier nanostructures under the influence of an applied
magnetic field. Figure 6a shows the conductance through
single-barrier nanostructures given in Figure 1a, where the
parameters are chosen to be the same as in Figure 2,
and the solid, dashed, and dotted curves correspond to
the external field Bex = 0, 0.5, and 1.0, respectively. De-

spite the averaging of T (E, q, 0, Bex) over half the Fermi
surface, the main features of the electron transmission is
still reflected at conductance. From Figure 6a one sees
that at zero magnetic field the conductance has a res-
onant peak in the low Fermi energy region. With Bex

increasing, the resonant peak shifts towards high Fermi
energy and is squashed. In Figure 6b we present the con-
ductance through a nanostructure consisting of two iden-
tical magnetic barriers under an external magnetic field.
Here Bex = 0, 0.25, and 0.5 correspond to the solid,
dashed, and dotted curves, respectively. The conductance
has also a resonance structure, and its main feature is sim-
ilar to that of Figure 6a. Moreover, the resonant peaks are
greatly suppressed as the applied magnetic field increases.

Here, we would like to point out that since we calcu-
late the conductance and the transmission current from
the equations (5) and (7), respectively, all the results pre-
sented so far are obtained at zero temperature and in the
ballistic regime. In the present work, we consider ballistic
transport of high mobility two-dimensional electron gases
(2DEG) with the mean free path not less than the di-
mension of magnetic-barrier nanostructures in tunneling
direction. For the finite temperature effect on electronic
tunneling through magnetic-barrier nanostructures, it is
known that at a finite temperature T the main contribu-
tion to both the ballistic conductance and the transmis-
sion current comes from electrons with energy located in
the region (EF − kBT,EF + kBT ). Therefore, at a finite
temperature our results may survive if the effective po-
tential U(x, q, Va, Bex) of magnetic nanostructure is taken
to be U(x, q, Va, Bex) � kBT by means of adjusting the
structural parameters and the applied external electric or
magnetic field, because in this case resonant tunneling is
still the dominant transport mechanism.

4 Conclusions

In summary, we have studied the electronic tunnel-
ing transport properties in the realistic magnetic-barrier
nanostructures under the influence of both an applied elec-
tric field and an uniform magnetic field. Features of tun-
neling properties through these magnetic-barrier nanos-
tructures depend not only on the configurations and the
incident wave-vector, but also strongly on the applied
electric field as well as the external magnetic field. The
transmission resonance shifts towards low-energy region
for entire incident wave-vector when an applied electric
field increases. For the magnetic barriers with antisym-
metric magnetic field the transmission resonance is dras-
tically suppressed with increasing the electric field, while
for magnetic barriers with symmetric magnetic field the
transmission resonance is enhanced for certain incident
wave-vectors under an applied electric field. As an exter-
nal magnetic field increases, both transmission resonance
and conductance shift towards high-energy region and is
successively squashed. The I − V characteristic exhibits
obvious negative-differential conductivity for electron tun-
neling through the magnetic-barrier nanostructures.
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